274 research outputs found

    Delay and distortion of slow light pulses by excitons in ZnO

    Get PDF
    Light pulses propagating through ZnO undergo distortions caused by both bound and free excitons. Numerous lines of bound excitons dissect the pulse and induce slowing of light around them, to the extend dependent on their nature. Exciton-polariton resonances determine the overall pulse delay and attenuation. The delay time of the higher-energy edge of a strongly curved light stripe approaches 1.6 ns at 3.374 eV with a 0.3 mm propagation length. Modelling the data of cw and time-of-flight spectroscopies has enabled us to determine the excitonic parameters, inherent for bulk ZnO. We reveal the restrictions on these parameters induced by the light attenuation, as well as a discrepancy between the parameters characterizing the surface and internal regions of the crystal.Comment: 4 pages, 4 figure

    Excitonic parameters of GaN studied by time-of-flight spectroscopy

    Get PDF
    We refine excitonic parameters of bulk GaN by means of time-of-flight spectroscopy of light pulses propagating through crystals. The influence of elastic photon scattering is excluded by using the multiple reflections of the pulses from crystal boundaries. The shapes of these reflexes in the time-energy plane depict the variation of the group velocity induced by excitonic resonances. Modeling of the shapes, as well as other spectra, shows that a homogeneous width of the order of 10 \mu eV characterizes the exciton-polariton resonances within the crystal. The oscillator strength of A and B exciton-polaritons is determined as 0.0022 and 0.0016, respectively.Comment: 12 pages, 2 figure

    Mie-resonances, infrared emission and band gap of InN

    Full text link
    Mie resonances due to scattering/absorption of light in InN containing clusters of metallic In may have been erroneously interpreted as the infrared band gap absorption in tens of papers. Here we show by direct thermally detected optical absorption measurements that the true band gap of InN is markedly wider than currently accepted 0.7 eV. Micro-cathodoluminescence studies complemented by imaging of metallic In have shown that bright infrared emission at 0.7-0.8 eV arises from In aggregates, and is likely associated with surface states at the metal/InN interfaces.Comment: 4 pages, 5 figures, submitted to PR

    Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides

    Full text link
    Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminalmacrolactamring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collisioninduced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c\bullet/z from c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions {\eth}b0In{\TH}. We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z\bullet and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture

    Electron Capture Dissociation Mass Spectrometry of Tyrosine Nitrated Peptides

    Get PDF
    In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification.Here, we have investigated the electron capture dissociation (ECD) and collision-induced association (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains

    Equilibrium shapes and energies of coherent strained InP islands

    Get PDF
    The equilibrium shapes and energies of coherent strained InP islands grown on GaP have been investigated with a hybrid approach that has been previously applied to InAs islands on GaAs. This combines calculations of the surface energies by density functional theory and the bulk deformation energies by continuum elasticity theory. The calculated equilibrium shapes for different chemical environments exhibit the {101}, {111}, {\=1\=1\=1} facets and a (001) top surface. They compare quite well with recent atomic-force microscopy data. Thus in the InP/GaInP-system a considerable equilibration of the individual islands with respect to their shapes can be achieved. We discuss the implications of our results for the Ostwald ripening of the coherent InP islands. In addition we compare strain fields in uncapped and capped islands.Comment: 10 pages including 6 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications

    Get PDF
    Since 2012, an array of 105 Biogeochemical-Argo (BGC-Argo) floats has been deployed across the world’s oceans to assist in filling observational gaps that are required for characterizing open-ocean environments. Profiles of biogeochemical (chlorophyll and dissolved organic matter) and optical (single-wavelength particulate optical backscattering, downward irradiance at three wavelengths, and photosynthetically available radiation) variables are collected in the upper 1000m every 1 to 10 days. The database of 9837 vertical profiles collected up to January 2016 is presented and its spatial and temporal coverage is discussed. Each variable is quality controlled with specifically developed procedures and its time series is quality-assessed to identify issues related to biofouling and/or instrument drift. A second database of 5748 profile-derived products within the first optical depth (i.e., the layer of interest for satellite remote sensing) is also presented and its spatiotemporal distribution discussed. This database, devoted to field and remote ocean color applications, includes diffuse attenuation coefficients for downward irradiance at three narrow wavebands and one broad waveband (photosynthetically available radiation), calibrated chlorophyll and fluorescent dissolved organic matter concentrations, and single wavelength particulate optical backscattering. To demonstrate the applicability of these databases, data within the first optical depth are compared with previously established bio-optical models and used to validate remotely derived bio-optical products. The quality-controlled databases are publicly available from the SEANOE (SEA scieNtific Open data Edition) publisher at https://doi.org/10.17882/49388 and https://doi.org/10.17882/47142 for vertical profiles and products within the first optical depth, respectively
    corecore